The Road to Collaboration is Paved with Goals

Dr Amel Bennaceur amel.bennaceur@open.ac.uk

Nothing worthwhile can be achieved in isolation

People and Agents can achieve more goals through collaboration

How to enable collaboration between autonomous agents and between autonomous agents and humans?

Different Types of Ensembles

How to achieve goals? How to represent and reason about goals? Google Drive **Robot-Humans** Services Robots Resources Socio-Technical People Cyber Social Physical

The Journey

The Journey

Collaborative Security

Collaborative Security - Example

Specifying (and Refining) the Requirements

10

Selecting Features

Coordinating the Behaviour

Putting it Together – Collaborative Security

$$G = \{G_n, G_1, ..., Gm\}$$
 partially ordered set of goals

$\forall \mathcal{C} \in \mathcal{P}(\mathcal{S}) E \mathcal{C} \not , E \not \vdash G$

Bennaceur, Tun, Bandara, Yu, Nuseibeh: Feature-Driven Mediator Synthesis: Supporting Collaborative Security in the Internet of Things. ACM Trans. Cyber Phys. Syst. (2018)

Putting it Together – Collaborative Security

Bennaceur, Tun, Bandara, Yu, Nuseibeh: Feature-Driven Mediator Synthesis: Supporting Collaborative Security in the Internet of Things. ACM Trans. Cyber Phys. Syst. (2018)

The Journey

Example - Goal-driven Composition

Example - Substitution

Example - Resource-driven Goal Adaptation

Goal-driven Composition – Top Down

- Let G be the set of goals we seek to achieve
 - \mathcal{R}' the set of available resources

Seek a set of resources to achieve the goals

Find $S \subseteq \mathcal{R}'$ such that $S \models G$

Constraint Optimisation Problem

Let
$$G, \mathcal{R}', \mathcal{R}, M \subseteq 2^R \times 2^R \times \mathbb{Z}$$
 ...

Seek a set of resources to achieve the goals Find $G'\approx_G G$ and $S\subseteq R'$ such that $S\models R'$

 \approx_G is application/domain specific

Putting it Together – Three Way Adaptation

Bennaceur, Zisman, McCormick, Barthaud, Nuseibeh: Won't take no for an answer: resourcedriven requirements adaptation. SEAMS@ICSE (2019) The Journey

ES&S iVotronic system and Election Fraud in Kentucky

Vote Flipping Example

Defining the Goal

- 1. The confirmed vote in every voting session is for the candidate selected by the voter in the session
- 2. The person who confirms the vote must be the voter of the session
- 3. In every session, it must be the voter who chooses the candidate, confirms the vote.
- 4. The election officials can never select a candidate after the voter has entered the password

Assumed Voter Behaviour

Relaxed Voter Behaviour

Relaxed Voting Official Behaviour

eo.select, eo.vote, eo.confirm, eo.back

Identify a Failure Scenario

Synthesis?

Avoid [election officials selects a candidate after the voter has entered the password] $(v.password \rightarrow) (\neg eo.select))$

Abstract First then Synthesise

Synthesise

Abstract

Synthesise

Tun, Bennaceur, Nuseibeh: OASIS: Weakening User Obligations for Security-critical Systems. 28th IEEE International Requirements Engineering Conference (2020)

The Journey

Groups in Emergencies

Need for Zero Responders' Help

Emergency Response Example

Reasoning about Humans

Using Social Identity Theory to Reason about Human's Behaviour 1/2

During an emergency, the sense of common fate favours the emergence of a *shared identity* among survivors. Survivors sharing an identity provide support to each other, expect to be supported and cooperate towards common goals

Levine & Manning, Social identity, group processes, and helping in emergencies. European Review of Social Psychology (2013)

Not every person in an emergency shares a social identity

von Sivers, Isabella, et al. "Modelling social identification and helping in evacuation simulation." *Safety science* 89 (2016)

When members behave differently from identity expectations, this transgression produces a payoff loss in the offender and the rest of the group members. This loss takes the form of anxiety from disappointing the group and for lack of group cohesion

Akerlof, George A., and Rachel E. Kranton. "Economics and identity." *The quarterly journal of economics* 115.3 (2000)

How to enable autonomous systems to reason about (and leverage) identity to achieve goals?

Social identity is a psychological state that cannot be observed directly

- Identity markers as indirect variables e.g., proximity, moving in the same direction, ...
- Identity in language 1) References to we and us, together, everybody e.g., it would be best for us not to go?
- 2) Social interactions, social bonds, and coordination e.g., *what do I do now?*
- 3) Shared emotions, emotional support, and empowerment e.g., you have to think about your family ... you have to do it!

Reasoning about Identity for Emergencies

A Bayesian Game Model with two agents: Robot + Survivor/Zero-Responder

The robot locates a survivor and a victim. It can guide them or request first-responder support.

0

00:00:00

800 n 8 50		** ****					** **		* * **	* * * *		*** * **	***				たたたたたたた			- Carlon Carlon		o evacuation (seconds) 0				fallen fallen_total dead
50	Î	ł		Ť		Ť	Ť	Ť	Ť (t f	Ť	Ť	Ť	Ť	ţ	Ť	Ť	Ϊ	İ.		Г	Ö	state of pas	sengers	10	
10		Ť	Ť		Ť	İ	ţ		•	ţţ	Ť	Ť	Ť	•	Ť	Ť		Ť į	Ì			890	Evacuatio	m	tu	rtles present
15		ţ	ţ	Ţ	Ţ	T	T	ŧ	Ť	ŕŧ	Ţ	ţ	ŧ	Ţ	T	Ţ	_	ŧ,	ſ			gers			ev	acuated
50		ţ	ţ	İ	İ	ţ		ţ	1	ţţ	ţ	İ	ţ	Ť	ţ	Ť	ţ	ţ	i ,			sseng				
_4_ratio	İż	Ť	Ť	Ť	T	X		T		ſΧ	T	T	T		χ		Ť	X	Ť			of pa				
	Ť		Ť	Ť	•	ţ	1	ţ	ţ:	ţΫ		ţ	ţ	ţ	•	•	Ť	tį	<u>t</u> .			state				
ient_ty	T	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	÷	T	Ŧ	• •	Ŧ	T	Ŧ	Ŧ	Ŧ	Ĩ	÷	* 1	[]			0				
	Ť	ĥ	î	•	^	î	÷	ŧ.	÷ż	ΪŤ	Ť	Ť	Ť	Ť	î	Ŧ	Ť	λi	łż			Ö	time (secon	ds) 10		
	Ť	Ť	Ť	ţ	ţ	Ť		Ť	Ť	ř.	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	ŧ .			10	Strategy t	racker		bystanders
	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	t	Ť	Ť		Ť	Ť	Ť		_1	<u>t t</u>	Ŀ						staff
																						ests				
ted door 1	evad	uate	d do	or 2		evac	uated	doo	or 3	eva	cuate	ed do	oor 4	4	DUP	her	of pe	aonle	died			Redu				
	0					0				0					0	iber	or pe	copie	area							
																						0	time		10	

Evacuation2

Putting it Together - An Identity-Aware Autonomous Agent

Gavidia-Calderon, Bennaceur, A. Kordoni, M. Levine, Nuseibeh: What do you want from me? adapting systems to the uncertainty of human preferences, ICSE-NIER⁽²⁰²²⁾

The Open University The Journey

	Reflexive	Reactive	Reasoned			
Ensemble						
	Distributed	Connected	Collaborative			
Individual		20				
	Automatic	Adaptive	Autonomous			

Castro, Mosterman, Rajhans, Valenti, Challenges in the Operation and Design of Intelligent Cyber-Physical Systems (2019)

THANK YOU amel.bennaceur@open.ac.uk

Bennaceur, Tun, Bandara, Yu, Nuseibeh: Feature-Driven Mediator Synthesis: Supporting Collaborative Security in the Internet of Things. ACM Trans. Cyber Phys. Syst. (2018)

Bennaceur, Zisman, McCormick, Barthaud, Nuseibeh: Won't take no for an answer: resource-driven requirements adaptation. SEAMS@ICSE (2019)

Gavidia-Calderon, Bennaceur, A. Kordoni, M. Levine, Nuseibeh: What do you want from me? adapting systems to the uncertainty of human preferences, ICSE-NIER⁽²⁰²²⁾

Tun, Bennaceur, Nuseibeh: OASIS: Weakening User Obligations for Security-critical Systems. 28th IEEE International Requirements Engineering Conference (2020)