Towards characterization of edgecloud continuum

faculty of mathematics and physics

2000s: Cloud computing

- Benefits:
 - ³ High resource availability and scalability
 - ³ Decoupling application development from infrastructure maintenance
 - Universal accessibility
 - [}] etc.
- Drawbacks:
 - High latency
 - Harder to ensure Quality of Service
 - Hard to support cyber-physical applications
 - [}] etc.

2010s: Edge computing

- Moving computation closer to the end users
- Providing higher security and robustness
- Using smaller servers and data centers
 Just one network hop away from the end users
- Can be used even without cloud

2010s: Fog computing

- Moving storage and communication closer to the end users
 - ³ I.e. not only the services
- Improving application efficiency
 - By reducing network consumption
 - By masking network outages
 - ³ By reducing latency and response time

2010s: Dew computing

- Using resources of the end devices themselves
 - ³ Within the cloud computing applications
 - ³ When there is a need or when it makes sense
 - ³ e.g. caching cloud data locally
- Cannot really be used without cloud or edge

2010s: Mist computing

- Lightweight computing between networking nodes, sensors and microcontrollers
- "Everything computing everywhere"
- Theoretically can be used as standalone
 - ³ In practice, is almost always complementary

Putting it all together

- Edge computing: smaller servers and data centers, close to the end users
- Fog computing: communication and storage at the edge
- Dew computing: utilizing the capabilities of end devices
- Mist computing: using extremely resource-constrained devices

- In practice, rarely any of these approaches is used on its own
- And the boundaries are not clearly defined

2020s: Edge-cloud continuum

- Lots of variations:
 - 3 Cloud continuum
 - Computational continuum
 - > Device-Edge-Cloud continuum
 - Device-to-Cloud continuum
 - [}] etc.
- Usage is increasingly common, e.g., recent Horizon Europe callls:
 - , Cognitive Cloud: Al-enabled computing continuum from Cloud to Edge" (2021)
 - "A clear technological strategy for edge integration into a cloud continuum offering opportunities for European cloud/edge technology suppliers" (2022)

Edge-cloud continuum

- What is it?
- So far is rather a vision than a coherent paradigm
 - And even as such, the vision is not clearly outlined
- Our goal: to clarify the ECC vision
 - ³ What are the elements of ECC ecosystem?
 - What properties are expected from ECC?
 - } Is this vision feasible?
 - What does it bring to the table?

Methods

- The term can be traced back to 2017
- Hundreds of papers mention "edgecloud continuum" or very close terms
- Much fewer engage with the term more extensively
 - i.e., beyond mere mention or reference
- We look for commonalities between different views on ECC

17	"edge-cloud continuum"
)-	About 310 results (0.07 sec)
ms	"edge-to-cloud continuum"
mara	
more	About 119 results (0.07 sec)
9	"computing continuum"
n	About 769 results (0.08 sec)
	"device-edge-cloud continuum"

About 25 results (0.07 sec)

 $\mathbf{10}$

Defining characteristics of ECC

1. Hierarchical structure

- ECC consists of a wide array of devices
 - With drastically different computational capabilities
 - From giant data centers to smallest end devices
 - Being interconnected and interdependent, these devices form a hierarchical structure

2. Cross-level situation-aware cooperation between components

- Components cooperate dynamically
 - Based on current conditions and objectives
 - Forming ad-hoc task-oriented groups
 - With a significant degree of autonomy

Defining characteristics of ECC

3. Fully liquid software

- Software components and functions can "flow" from one device to another
 - Between devices of the same level handover
 - Between devices on different levels
 - Based on current environment conditions, application needs, etc.
 - Not easy to achieve in practice

4. Edge intelligence

- Deployment of ML models in ECC
 - ³ Training and inferencing distributed across ECC
 - Can potentially help to achieve the "smart environment" properties of ECC
 - e.g., Dynamic self-adaptation and situational cooperation

Open questions

- Will hardware capabilities be sufficient in the near future?
 - Can we assume continuous IoT hardware improvement?
- To what degree it is possible to achive ECC properties with current software approaches?
 - ³ E.g., dynamic self-adaptive management, software liquidity
- Are there sufficient incentives to adopt the ECC paradigm in industry and how to create them?
 - Will the industry be willing to move towards ECC?
- What are the suitable representative examples?
 - What are the new use cases that are enabled by ECC?