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Service Composition: Dynamic Environment
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Service Composition: Considerations

 Compositions need to meet
nonfunctional user needs while

* Due to dynamic environment,
composition needs to be adaptable
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Current Approaches

* Most approaches perform adaptation at the services level or propose
new composition algorithms (Wang et al. 2016, Ali et al. 2015,
Schuller et al. 2014, Al-Helal et al. 2014, Ardagna et al. 2011)

* Current Approaches
e Platforms
e Algorithms



Current Approaches: Platforms

 MOSES (Cardellini et al., 2017)

 Address adaptation at the services level using linear programming (LP) formulations
e Support for dynamically adapting coordination patterns is also provided

* QoSMOS (Calinescu et al., 2009)

* Selects candidate services at runtime or allocates resources to services for
execution to meet Quality of Service (QoS) requirements

* Integrating reinforcement learning with multi-agent techniques (Wang et
al. 2017)
* Proposes adaptive service selection at runtime using a Markov Decision Process
* Multi-agent techniques have communication overhead
* Can easily become compute intensive



Current Approaches: Composition Algorithms

e Alrifai et al. 2009

* Decomposes global constraints into local constraints to select services

* Trummer and Faltings, 2011
* Propose dynamic algorithm selection for a set of batched user requests
* Focus is on recommending algorithms to minimize cost
e Recommendations are most recent executions



Research Question

* Given a wide variety of available service composition methods, we
focus on this question: how can we determine the right method for a
given service composition task?

* Goal 1: How can we determine the right composition method for a given
service composition task?

* Goal 2: How does selecting a composition algorithm on a per-instance basis
perform compared to a pre-selected algorithm?



System Overview
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Composition Algorithm Selector

e Steps followed
* Dataset creation
e Classifier selection

* Evaluation of classifier-based
selector
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Dataset Creation > Classifier Selection > Evaluation of Approach

Composition Algorithm Selector

* Goal 1: How can we determine the
right composition method for a given

service composition task?

 \We examine the use of classifiers as a

selector

 Composition algorithms considered
* Multi-Constraint Shortest Path (MCSP)

(Yue et al., 2007),

* Ant Colony System (ACS) (Zhang et al.,

2010) and

* Genetic Algorithm (GA) (Trummer and

Faltings, 2011)
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Dataset Creation > Classifier Selection > Evaluation of Approach

Composition Algorithm Selector

* Dependency graphs

 Number of Abstract Service (#AS):

5, 10, 20, 30, 40

* Number of Candidate Services
(#CS): 5, 10, 15, 20, 30, 35, 40

* QWS! dataset randomly sampled

for candidate services

* We use the Lp metric (Zhang et

al., 2010) to compute multi-
objective solution quality

thttps://qwsdata.github.io/
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Dataset Creation > Classifier Selection > Evaluation of Approach

Composition Algorithm Selector

* Example dataset entry

#AS | #CS | Weight 1 Weight 8 QoS 1 QoS 8 Time (s) Memory (kB) Label

20| 25 0.125 0.2 0.4 0.8 15 125,000 GA
* Labeling scheme
#AS | #CS Desired Delivered Allotted | Utilized time Allocated Utilized memory Label
solution solution time memory
quality (Lp) | quality (Lp)

20| 25 0.7 0.90 15 25 90,000 120,000 MCSP
20| 25 0.7 0.60 15 5 90,000 56,000 GA
20| 25 0.7 0.71 15 16 90,000 95,000 ACS
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Dataset Creation > Classifier Selection > Evaluation of Approach

Composition Algorithm Selector

 Classifiers considered Composition Algorithm Adaptation
1. Random Forest,
2. Decision Tree, Data-Driven Composition
3. Logistic Regression, / Algorithm Selector
4. Quadratic Discriminant Analysis, 1 ! ! 1
5. Support Vector Machines l l
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* 5 fold cross validation repeated 10
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Dataset Creation > Classifier Selection > Evaluation of Approach

Preliminary Results: Classifier Selection

Classifier Accuracy Fl-score
Random Forest 0.95 0.94
Decision Tree 0.94 0.93
QDA 0.92 0.92
Logistic Regression 0.88 0.88
SVM - rbf 0.51 0.39
SVM - sigmoid 0.52 0.35

* QDA performance indicates nonlinear decision boundary, different inter-class variances. The best
performance was found with regularization parameter was found to be 0.5
* Thus, the algorithm selector is Random Forest with 200 trees and a maximum depth of 6.
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Dataset Creation > Classifier Selection > Evaluation of Approach

Conclusions on Goal # 1

* Goal 1: How can we determine the right composition method for a
given service composition task?

* A set of classifiers evaluated
* Considering different decision boundaries between variables

* Presence of non-linear decision boundaries indicated

e Performance observed for one set of solution utilities
* Findings

 Random forest outperforms the rest
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Dataset Creation > Classifier Selection > Evaluation of Approach

Classifier-based Selector Performance

e Goal 2: How does selecting a composition algorithm on a per-instance
basis perform compared to a pre-selected algorithm?

* We compare classifier selection to a naive approach, which selects
based purely on solution utility

* Measured time and memory resources used by both selections
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Dataset Creation > Classifier Selection > Evaluation of Approach

Composition time (s)
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* On average, classifier-based selection took :

* 33% less time
* 24.8% less memory
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Dataset Creation > Classifier Selection > Evaluation of Approach

Seconds Saved

Preliminary Results: On Average

Time Savings Memory Savings
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e Observation: Both time and memory savings observed for the test set. At a minimum about 150000 kB were
saved, while time savings peaked approximately around 100 seconds
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Conclusions on Goal 2

* Goal 2: How does selecting a composition algorithm on a per-instance
basis perform compared to a pre-selected algorithm?

* Performance compared to a naive approach
* Classifier-based selection saves time and memory required for composition

* Findings
* On average, classifier selected algorithms took

* 33% less time
e 24.8% less memory

* Overheads
* Selection overhead: ~1% of processing time



Future Work

* Preliminary results demonstrate considerable compute resource
savings for various solution utility requirements.

* We will expand our experiments to include
* Diverse solution qualities
* Other types of learning algorithms that do not require labels
* Addition of diverse composition algorithms

* In addition to this, we will deploy our approach as an online feedback
loop to be used at runtime.



Summary

* We proposed selection of composition algorithms per composition
task

* Preliminary results demonstrate considerable compute resource
savings
* Future work includes expansion of experiments include
* Diverse solution qualities

* Other types of learning algorithms that do not require labels
* Deployment as an online feedback loop
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