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Service Composition: Dynamic Environment
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Service Composition: Considerations
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• Compositions need to meet 
nonfunctional user needs while 
constrained by compute resources

• Due to dynamic environment, 
composition needs to be adaptable

• So, services are re-selected using a 
predetermined algorithm



Current Approaches

• Most approaches perform adaptation at the services level or propose 
new composition algorithms (Wang et al. 2016, Ali et al. 2015, 
Schuller et al. 2014, Al-Helal et al. 2014, Ardagna et al. 2011)

• Current Approaches
• Platforms

• Algorithms
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Current Approaches: Platforms

• MOSES (Cardellini et al., 2017)
• Address adaptation at the services level using linear programming (LP) formulations

• Support for dynamically adapting coordination patterns is also provided

• QoSMOS (Calinescu et al., 2009)
• Selects candidate services at runtime or allocates resources to services for 

execution to meet Quality of Service (QoS) requirements

• Integrating reinforcement learning with multi-agent techniques (Wang et 
al. 2017) 

• Proposes adaptive service selection at runtime using a Markov Decision Process

• Multi-agent techniques have communication overhead

• Can easily become compute intensive
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Current Approaches: Composition Algorithms

• Alrifai et al. 2009
• Decomposes global constraints into local constraints to select services

• Trummer and Faltings, 2011
• Propose dynamic algorithm selection for a set of batched user requests

• Focus is on recommending algorithms to minimize cost

• Recommendations are most recent executions
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Research Question
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• Given a wide variety of available service composition methods, we 
focus on this question: how can we determine the right method for a 
given service composition task?

• Goal 1: How can we determine the right composition method for a given 
service composition task?

• Goal 2: How does selecting a composition algorithm on a per-instance basis 
perform compared to a pre-selected algorithm?



System Overview
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Composition Algorithm Selector
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• Steps followed
• Dataset creation

• Classifier selection

• Evaluation of classifier-based 
selector
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• Goal 1: How can we determine the 
right composition method for a given 
service composition task?

• We examine the use of classifiers as a 
selector

• Composition algorithms considered
• Multi-Constraint Shortest Path (MCSP) 

(Yue et al., 2007), 
• Ant Colony System (ACS) (Zhang et al., 

2010) and 
• Genetic Algorithm (GA) (Trummer and 

Faltings, 2011)

Composition Algorithm Selector

Dataset Creation Classifier Selection Evaluation of Approach
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• Dependency graphs
• Number of Abstract Service (#AS): 

5, 10, 20, 30, 40
• Number of Candidate Services 

(#CS): 5, 10, 15, 20, 30, 35, 40

• QWS1 dataset randomly sampled 
for candidate services

• We use the Lp metric (Zhang et 
al., 2010) to compute multi-
objective solution quality

1https://qwsdata.github.io/

Dataset Creation Classifier Selection Evaluation of Approach

Composition Algorithm Selector



• Example dataset entry

• Labeling scheme
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Composition Algorithm Selector

#   # CS Weight 1 … Weight 8 QoS 1 … QoS 8 Time (s) Memory (kB) Label

20 25 0.125 0.2 0.4 0.8 15 125,000 GA

Dataset Creation Classifier Selection Evaluation of Approach

# AS # CS Desired 
solution 

quality (Lp)

Delivered 
solution 

quality (Lp)

Allotted 
time

Utilized time Allocated 
memory

Utilized memory Label

20 25 0.7 0.90 15 25 90,000 120,000 MCSP

20 25 0.7 0.60 15 5 90,000 56,000 GA

20 25 0.7 0.71 15 16 90,000 95,000 ACS
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• Classifiers considered
1. Random Forest, 

2. Decision Tree, 

3. Logistic Regression, 

4. Quadratic Discriminant Analysis,

5. Support Vector Machines

• Dataset shuffled, 70/30 train-test split

• 5 fold cross validation repeated 10 
times

Dataset Creation Classifier Selection Evaluation of Approach

Composition Algorithm Selector



Preliminary Results: Classifier Selection
Classifier Accuracy F1-score

Random Forest 0.95 0.94

Decision Tree 0.94 0.93

QDA 0.92 0.92

Logistic Regression 0.88 0.88

SVM - rbf 0.51 0.39

SVM - sigmoid 0.52 0.35
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• QDA performance indicates nonlinear decision boundary, different inter-class variances. The best 
performance was found with regularization parameter was found to be 0.5

• Thus, the algorithm selector is Random Forest with 200 trees and a maximum depth of 6.

Dataset Creation Classifier Selection Evaluation of Approach



Conclusions on Goal # 1
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• Goal 1: How can we determine the right composition method for a 
given service composition task?

• A set of classifiers evaluated
• Considering different decision boundaries between variables

• Presence of non-linear decision boundaries indicated

• Performance observed for one set of solution utilities

• Findings
• Random forest outperforms the rest

Dataset Creation Classifier Selection Evaluation of Approach



Classifier-based Selector Performance

• Goal 2: How does selecting a composition algorithm on a per-instance 
basis perform compared to a pre-selected algorithm?

• We compare classifier selection to a naive approach, which selects 
based purely on solution utility

• Measured time and memory resources used by both selections
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Dataset Creation Classifier Selection Evaluation of Approach
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• On average, classifier-based selection took :
• 33% less time
• 24.8% less memory
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Preliminary Results: Usage



• Observation: Both time and memory savings observed for the test set. At a minimum about 150000 kB were 
saved, while time savings peaked approximately around 100 seconds
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• Goal 2: How does selecting a composition algorithm on a per-instance 
basis perform compared to a pre-selected algorithm?

• Performance compared to a naïve approach
• Classifier-based selection saves time and memory required for composition

• Findings
• On average, classifier selected algorithms took

• 33% less time

• 24.8% less memory

• Overheads
• Selection overhead: ~1% of processing time
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Conclusions on Goal 2



Future Work

• Preliminary results demonstrate considerable compute resource 
savings for various solution utility requirements. 

• We will expand our experiments to include 
• Diverse solution qualities

• Other types of learning algorithms that do not require labels 

• Addition of diverse composition algorithms 

• In addition to this, we will deploy our approach as an online feedback 
loop to be used at runtime. 
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Summary

• We proposed selection of composition algorithms per composition 
task 

• Preliminary results demonstrate considerable compute resource 
savings

• Future work includes expansion of experiments include 
• Diverse solution qualities

• Other types of learning algorithms that do not require labels 

• Deployment as an online feedback loop
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