Guaranteed Latency Applications
in Edge-Cloud Environment

http://d3s.mff.cuni.cz

Department of Petr Hnetynka
Distributed and
e e Petr Kubat
Rima Al-Ali

llias Gerostathopoulos
Danylo Khalyeyev

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics



Modern cyber-physical systems

® Combine distributed embedded devices W|th
computation in cloud :

* Applications:
= Smart agriculture,
= Smart power grid,
= Smart traffic, ...

* Include thousands to millions of devices

* Inclusion of cloud makes possible advanced data
analysis and decision-making

= making the system “smarter”



Real-time requirements

°* Interaction with the physical world

= Leads to the presence of the real-time requirements
°® e.g. a real-time video stream has to be processed without any
significant delay

® Interaction with the cloud

= Happens even inside the real-time tasks running on
embedded devices
* The cloud has to participate in overall real-time guarantees

= No way to ensure these guarantees is provided by the cloud software



Existing approaches

s ® s © s © s
°* Existing approaches generally try to reduce the
communication latencies
= By bringing the cloud closer to user
= By caching the data
= By prediction

* All these approaches still work on best-effort

= j.e. no real-time guarantees provided



Our approach

®* Combining edge-cloud processing with runtime
performance awareness

* Real-time guarantees are provided by:

= Pre-assessing the application
= Monitoring the application performance

= Predicting the application performance based on
historical observations

® Cloud-centric control of applications
= Traditional declarative deployments

* Extended with timing requirements specification



Running example

°* An augmented reality application
= A mobile phone application

= A processing part in the cloud
® Analyzes the video stream from clients

* Sends back the augmenting information
= e.g. recognized faces

®* The information has to be displayed
with minimum delay

= Even better, with a guaranteed
communication latency



Structure of the approach

® Q1: Specification of the real-time guarantees
= In line with existing practices
= Establishing a verifiable contract

®* Q2: Assessment of cloud applications

= To determine whether the response time can be
guaranteed

= Performed automatically

® Q3: Providing guarantees at runtime

= |n face of changing conditions
® Background load
* User mobility



Q1: Real-time guarantees specification

® Traditional declarative specification of microservices
= + Measurement probes specification
+ Real-time requirements specification

® Probe — a function that performs a performance test

= Does not take any inputs
= Can be measured at runtime

Strongly correlates with the operation that needs to be
guaranteed

®* Timing requirements are specified over the probes
" |n contrast to real operations



Q1: Extended deployment descriptor

®* Our implementation extends
Kubernetes deployment
specification
= Contains a specification of timing
requirements
°* “below X ms in Y% of cases”

* Defined over probes
= Also a part of the extended descriptor

kind: Deployment
metadata:
name: recognizer-deployment
labels:
app: recognizer
spec: # micoservices specification
template:
metadata:
labels:
app: recognizer
spec:
containers:
- name: recog
image: d3srepo/recog
ports:
- containerPort: 7777
probes: # probes
- hame: recognize
timingRequirements: # timing requirements
- name: recognize limit
probe: recognize
limits:
- probability: 0.999
time: 50 # Max. 50ms in 99.9% cases
- probability: 0.99
time: 30 # Max. 30ms in 99% cases



Q2: Assessment of an application

* Performed before the actual deployment of the
application
* Verifies feasibility of the timing requirements

= Informs the developer whether the application can be
admitted and on what terms

®* The probes are invoked many times in this process

= Each invocation collects data about the probe’s
behavior

10



Q2: Measurement

® Application performance is measured with different
background workloads
= |O-intensive, CPU-intensive, memory-intensive, ...

= Gives us estimates on how different applications impact
each other

® System counters are collected in the process
= |nstruction count, cache miss count, I0OPS, ...
= Allows us to categorize probes by performed computation
type
® Gradually, this builds knowledge about application
performance

= Used in what-if analysis about the impact of different
applications on each other

® The precision of the analysis grows with time

11



Q3: Providing the real-time guarantees

® To have a control over the deployment of applications,
we provide the Controller
= An intermediary between the user and the cloud
= Collects information from the nodes via node agents
= Controls the probe invocation via application agents
= Responsible for execution of the self-adaptation loop

Controller

Collect
Utilization
Data

Application
Container | Agent
(Kubernetes Pod)

Application
A Container
(Kubernetes Pod)

Invoke Probes

12



Q3: Self-adaptation loop

Finding a solution - Comparing the desired
Building a a new deployment configuration to the Creating an execution
constraint configuration current one plan - a set of actions
optimization { that will bring the cloud
problem c————— —0 to the desired state
: : :

Monitoring the
performance of
applications “ -

Analysis —— Planning

Execution Redeploying
the microservices

according to the
execution plan

Monitoring
Monitoring the -
state of the cloud

Knowledge

Kubernetes Cloud

13



Summary

m

® Our approach provides statistical guarantees on the
response time of the edge-cloud applications

®* Timing requirements are specified directly as a part of
the deployment specification

® Guarantees are kept in changing conditions
= Thanks to performance awareness and adaptation

® Key ideas of the approach:

= Specification of the requirements over the pre-defined
probes

= Automatic pre-assessment of the application

= Building a queryable knowledge model for improving
adaptation decisions

14



Current and future work

® Our experiments show that applications can be
successfully categorized based on resource
utilization

® Currently, our framework includes:
= A control architecture over K8S

= Prototypes of all of its main components

Thanks!

15



