
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

Guaranteed Latency Applications 
in Edge-Cloud Environment

Petr Hnetynka
Petr Kubat
Rima Al-Ali

Ilias Gerostathopoulos
Danylo Khalyeyev



Modern cyber-physical systems

2

Combine distributed embedded devices with 
computation in cloud
Applications:

Smart agriculture,
Smart power grid,
Smart traffic, …

Include thousands to millions of devices
Inclusion of cloud makes possible advanced data 
analysis and decision-making 

making the system “smarter”



Real-time requirements

3

Interaction with the physical world
Leads to the presence of the real-time requirements

e.g. a real-time video stream has to be processed without any 
significant delay

Interaction with the cloud 
Happens even inside the real-time tasks running on 
embedded devices

The cloud has to participate in overall real-time guarantees
No way to ensure these guarantees is provided by the cloud software



Existing approaches

4

Existing approaches generally try to reduce the 
communication latencies

By bringing the cloud closer to user
By caching the data
By prediction

All these approaches still work on best-effort
i.e. no real-time guarantees provided



Our approach

5

Combining edge-cloud processing with runtime 
performance awareness
Real-time guarantees are provided by:

Pre-assessing the application
Monitoring the application performance
Predicting the application performance based on 
historical observations

Cloud-centric control of applications
Traditional declarative deployments

Extended with timing requirements specification



Running example

6

An augmented reality application
A mobile phone application
A processing part in the cloud

Analyzes the video stream from clients 
Sends back the augmenting information

e.g. recognized faces

The information has to be displayed 
with minimum delay

Even better, with a guaranteed 
communication latency



Structure of the approach

7

Q1: Specification of the real-time guarantees
In line with existing practices
Establishing a verifiable contract 

Q2: Assessment of cloud applications
To determine whether the response time can be 
guaranteed
Performed automatically

Q3: Providing guarantees at runtime
In face of changing conditions

Background load
User mobility



Q1: Real-time guarantees specification

8

Traditional declarative specification of microservices
+ Measurement probes specification
+ Real-time requirements specification

Probe – a function that performs a performance test
Does not take any inputs
Can be measured at runtime
Strongly correlates with the operation that needs to be 
guaranteed

Timing requirements are specified over the probes
In contrast to real operations



Q1: Extended deployment descriptor 

9

Our implementation extends 
Kubernetes deployment 
specification

Contains a specification of timing 
requirements

“below X ms in Y% of cases”
Defined over probes

Also a part of the extended descriptor

kind: Deployment
metadata:

name: recognizer-deployment
labels:

app: recognizer
spec: # micoservices specification

template:
metadata:

labels:
app: recognizer

spec:
containers:
- name: recog

image: d3srepo/recog
ports:
- containerPort: 7777

probes: # probes
- name: recognize
timingRequirements: # timing requirements
- name: recognize limit

probe: recognize
limits:
- probability: 0.999

time: 50 # Max. 50ms in 99.9% cases
- probability: 0.99

time: 30 # Max. 30ms in 99% cases



Q2: Assessment of an application

10

Performed before the actual deployment of the 
application
Verifies feasibility of the timing requirements

Informs the developer whether the application can be 
admitted and on what terms

The probes are invoked many times in this process
Each invocation collects data about the probe’s 
behavior



Application performance is measured with different 
background workloads

IO-intensive, CPU-intensive, memory-intensive, …
Gives us estimates on how different applications impact 
each other

System counters are collected in the process
Instruction count, cache miss count, IOPS, …
Allows us to categorize probes by performed computation 
type

Gradually, this builds knowledge about application 
performance

Used in what-if analysis about the impact of different 
applications on each other

The precision of the analysis grows with time

Q2: Measurement

11



Q3: Providing the real-time guarantees

12

To have a control over the deployment of applications, 
we provide the Controller

An intermediary between the user and the cloud
Collects information from the nodes via node agents
Controls the probe invocation via application agents
Responsible for execution of the self-adaptation loop



Q3: Self-adaptation loop

13



Summary

14

Our approach provides statistical guarantees on the 
response time of the edge-cloud applications
Timing requirements are specified directly as a part of 
the deployment specification
Guarantees are kept in changing conditions

Thanks to performance awareness and adaptation
Key ideas of the approach:

Specification of the requirements over the pre-defined 
probes
Automatic pre-assessment of the application
Building a queryable knowledge model for improving 
adaptation decisions



Current and future work

15

Our experiments show that applications can be 
successfully categorized based on resource 
utilization
Currently, our framework includes:

A control architecture over K8S 
Prototypes of all of its main components

Thanks!


