
An Integrated Approach for

Context-Aware Development

Aurora Macías – Indra Sistemas

Elena Navarro – University of Castilla-La Mancha

Contents

Introduction

Background: Approaches to the
development of Context-Aware
Systems

Context Toolkit

MAPE-K Loop

Layer Approach

Common Aspects of the Analysed
Frameworks

An Integrated Proposal

Architecture Elements

Relations among Architecture
Elements

Case Study

Conclusions and Future Work

Introduction

Introduction

- Mobile devices omnipresent / ubiquitous systems
increasingly popular

- Context-Aware systems:
• Capable to adapt their operations without explicit user interaction

• Great potential for increasing quality (i.e.: usability, effectiveness)

• Satisfy a variety of requirements: SoC, acquisition / storage /
interpretation of context, transparent communications, resource
discovery

• Requirements should be supported by Software Architecture

Background:
Approaches to the
development of Context-
Aware Systems

Background

- Context Toolkit

- MAPE-K loop

- Layer Approach

Background. Context Toolkit

- Different abstractions or software components to offer

SoC, facilitate reuse, and satisfy C-A requirements

- Independently executable and deployable

- Context Architecture: supports context information

acquisition and delivery, and execution of common actions

- Application logic outside context architecture

Background. Context Toolkit

Background. MAPE-K Loop

- Self-adaptive systems
introduced for C-A
development

- SoC key aspect of MAPE-K
Loop configuration to achieve
adaptation goals

- Execution of components in
cycle, communication ‘among
them’ through Knowledge

Background. Layer Approach

Sensors

Raw data retrieval

Preprocessing*

Storing/management

Reasoning*

Application

L1

L2

L3*

L4

L5*

L6

- Collects the aspects

common to most of the

context-aware architectures

- Entails the SoC needed to

acquire the context and to

reuse the components

- Each layer gets information

from the layer underneath

Background.
Common Aspects of the Analyzed Frameworks

Responsibility CTK Layer Approach MAPE-K
Acquisition of data (from sensors and other sources) as elements of

simple context

Widget Raw data retrieval Monitor

Managed

system

Resolution of conflicts when obtaining contextual data from various

sources

Widget Pre-processing Monitor

Data pre-processing (simple inference) Interpreter Pre-processing Monitor
Aggregation of multiple logically related context information

elements

Aggregator Pre-processing Monitor

Complex inference (reasoning) Interpreter Reasoning Analyze
Updating of information Widget

Aggregator

Discoverer

Storing/management Monitor

Publishing information (through notification of change or methods

for querying) related to relevant aspects of the system and the

environment

Widget

Aggregator

Discoverer

Storing/management Knowledge

Changing of status information (configuration) Service Storing/management Plan

Execute
Controling (of the system) or changing in the environment by using

actuators

Service Application Managed

system
Publishing (through queries) of adaptation / action objectives --- --- Knowledge

Background.
Common Aspects of the Analyzed Frameworks

- Exposure of adaptation / action objectives not supported by CTK nor

the layer approach

- Each CTK-component or layer manages its own adaptation / action

information without exposing it

- Advantages of non-exposure of adaptation goals:

• Simplified maintenance: modify and redeploy only 1 component in

case of change of objectives:

- less inactivity time (subsystem inactive, not the entire system) leads

to increased availability

• More sources for storing data:

- number of bottlenecks reduced (increased performance)

Background.
Common Aspects of the Analyzed Frameworks

For instance:

• MAPE-K Monitor equivalent to:

• Raw data recovery and pre-

processing layers

• Part of the management /

storage layer

• Raw data recovery layer

equivalent to CTK context widget

(single element)

• Pre-processing layer equivalent

CTK interpreter and aggregator

Conceptual composition in terms of responsibilities among components of
different frameworks

Background.
Common Aspects of the Analyzed Frameworks

- CTK designed to (+) satisfy C-A requirements (SoC, acquisition /
storage / interpretation of context, transparent communications,
resource discovery) (-) but SoC regarding inference is not properly
addressed

- Layer approach derived to (+) consider most common
responsibilities of C-A systems but (-) does not tackle explicitly
resources discovery

-MAPE-K proposed to (+) provide the SoC needed to achieve self-
adaptation goals but presents (-) different disadvantages
mentioned

- Thus, all proposals should offer a higher SoC

An Integrated Proposal

An Integrated Proposal.
Architecture Elements

- Proposed architectural framework elements based on CTK
abstractions

• CTK provides the highest SoC and cohesion degree of the
frameworks analyzed

- CTK elements concerns modified and regrouped to achieve
a higher SoC

- New proposed framework elements match resulting
concerns

- Service component renamed to ‘function’ to avoid possible
ambiguity when considering implementation aspects

An Integrated Proposal.
Architecture Elements

Component Responsibilities

Context Widget (i) Acquisition, using sensors, of environment status information related to a context element which may be

optionally composed. It also resolves conflicts when datum is obtained from different sources.

(ii) Publishing information related to contextual elements by using (a) notification of significative changes of

the context or (b) context polling methods.

(iii) Publishing information related to the context acquisition by using request methods of additional attributes

(sensor type, data acquisition method, sensor exactitude/precision, etc.).

(iv) Registration of the context elements into the acquired context history.

Aggregator (i) Gathering of multiple context elements related to an entity in order to facilitate access to such information.

(ii) Publishing aggregated contextual information related to the corresponding entity by using (a) notification of

changes of the component context or (b) context polling methods.

(iii) Registration of the context information into the acquired context history.

Interpreter** (i) Simple inference or derivation: transformation of context atomic information using auxiliary sources of

information.

Reasoner* (i) Complex inference or reasoning: gathering new context information of higher abstraction level by using

multiple context information.

Function*** (i) Control (of the system/application) or change in the environment by using an actuator.

(ii) Change status information (or reconfiguration).

Discoverer (i) Registration of the available components for the system as well as their capabilities and communication

facilities (language, protocol, address, etc.).

(ii) Determination of components that are no longer available in the system.

(iii) Publishing information related to the components of the system by using (a) notification of changes or (b)

polling.

*New component - **Modified functionality - ***Name changed

An Integrated Proposal.
Relations among Architecture Elements

- Complexity of C-A systems increasing due to
interconnection of great amounts of heterogeneous
devices and platforms

- C-A complexity does not introduce new relations
among architecture elements in a substantial way

- Discoverer no longer a singleton in the architecture
(API Gateway pattern)

• Hierarchy of discoverer components to manage different and

independent business subsystems due to technological, economical,

performance, etc. reasons

Case Study
Health Risk Alarm

Case Study. Health Risk Alarm

- Context-aware system in the healthcare domain

- Detects emergency or illness situations affecting users by
using contextual information gathered by sensors

- Alarm warnings and other similar actions based on user
preferences, their contacts, or their geographical proximity
among others

- Example: stress situation detection

Case Study. Health Risk Alarm

- Stress considered one of the autonomous mechanisms that
allows human body to adapt to different demands

• Frequent and prolonged exposure to high level stress can induce or

exacerbate some cardiovascular or nervous deceases

• Chronic stress drives to DNA damage advancing the ageing process,

miscarriage, or cancer initiation

- Possible to measure stress episode intensity analyzing the
variability of some physiological signals: Heart Rate (HR),
Galvanic Skin Response (GSR) and, Body Temperature (BT)

Case Study. Health Risk Alarm

[EMERGENCY] “User has been under a high level of stress for a long time”

- Architecture configuration:

• Includes all the abstractions
defined

• Supports the complete
context life cycle mentioned
(like the analyzed frameworks)

• Satisfies C-A systems
requirements defined

• SoC degree increased (simple
inference and reasoning
supported by different
abstractions)

Conclusions and Future
Work

Conclusions and Future Work

- C-A systems are promising and challenging

- Architectural aspects play an important role
to ensure and improve their overall quality

- New integrated proposal shown briefly in the
design of a C-A system in healthcare domain

- More work needed for the development and
evaluation of the presented framework to
validate it in an empirical way

An Integrated Approach for

Context-Aware Development

Aurora Macías – Indra Sistemas

Elena Navarro – University of Castilla-La Mancha

Case Study. Health Risk Alarm

- Architecture configuration:

Stress situation implementation based on the proposal

and on microservices architecture

Case Study. Health Risk Alarm

Health Risk Alarm implementation based on the proposal

and on microservices architecture

