Autonomic component ensembles for
dynamic evolving architectures of
context aware smart systems

http://d3s.mff.cuni.cz

Tomas Bures

bures@d3s.mff.cuni.cz

Department of

' Distributed and
CHARLES UNIVERSITY IN PRAGUE Dependable

faculty of mathematics and physics




Context-aware, Autonomous, Smart ?

N

iowr plart 1
.

[ LAMEE L

|
E E i \ N https://www.techinasia.com/this-self-watering-plant-pot-just-hit-its-crowdfunding-goal

https://www.petagadget.com/gadget/satechi-revogi-
bluetooth-4-0-rgbw-smart-led-bulb/

smarl Window

Light Swilch

Rir

condilione:

Windi Ran Saneor

https://www.pcmag.com/news/350867/smart-fridge-showdown-Ig-smart-
instaview-vs-samsung-family Doar magnet ssneor
‘Wiraless |F dabacion TV sal

3.5 Mastar pane

Homa Sever

http://smarthomeenergy.co.uk/what-smart-home 2



Context-aware, Autonomous, Smart
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Context-aware, Autonomous, Smart ?

* “Traditional” systems
= Well known in embedded systems community
® Focus on HW
= Limited architecture, limited dynamicity
= Sometimes not even perceived as distributed

®* “Smart” systems

= Exploit what we pretty already can do by letting things
cooperate

= _..and proactively act in their environment



Example: Robot Swarms

[FP7 project ASCENS — Deliverable D7.1]



Example: E-mobility

Time: 6:45PM

POI: Work .
Time: 7AM-4PM [POI: Home |
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[POI: Cinema ]
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. POIl: Home
Time: 6:30PM

[FP7 project ASCENS — Deliverable D7.1 (VW Demonstrator)] [
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Example: Mobile Edge Clouds
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Example: Ad-hoc Clouds

[FP7 project ASCENS — WP7.2 Demonstrator]



Software architecture challenge

How to model smart, autonomous and context-
aware systems to tame their complexity and give
some level of predictability

In particular:

® Architectural models

= Dynamicity

® Constantly evolving based on situations in the environment
= Autonomy

* Tradeoff between centralized and decentralized behavior

* Ability to make decisions at real-time
= Adaptivity

® Ability to function “well” in different (sometimes unforeseen) contexts



Challenges and existing approaches



“Classical” Component-Based Approach

®* Centralized ownership & deployment
®* Cannot capture dynamic changes in architecture
® Strong reliance on other components
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Service-Oriented Approach

¢ 3-rd party ownership & deployment

®* Dynamic composition (but not visible in the

architecture)

* Strong reliance on other services
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Agent-Based Approach

¢ 3-rd party ownership & deployment

®* Dynamic composition (but no architecture)

¢ Autonomous (beliefs — desires — intentions)

User

INFORM

User

Agents bring conceptual autonomy

But do not sufficiently translate it to

Beliefs
Desires
Intentions
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Car —C‘
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Distributed Control Systems

e Software as a set of real-time tasks

= Sensing, actuating TA_m h . h |
= Real-time scheduling U ) ] | | ]m

* Period, deadline, WCET T |
TC(.}...-.-...-mH"*

0-

B

—.__

100

® Distributed communication

= Reliable, real-time guarantees
= CAN, TTP, FlexRay, ...



Attribute-based Communication

®* Appears in coordination languages like SCEL, AbC

Calculus

= De Nicola R., Loreti M., Pugliese R., Tiezzi F.: A formal approach
to autonomic systems programming: The SCEL language, TAAS

vol. 9, issue 2, 2014

= Alrahman Y. A., De Nicola R., Loreti M.: On the Power of
Attribute-based Communication, FORTE 2016

qry(“targetLocation”, ?x, ?y)@(task = “task;”)
put(“targetLocation”, x, y)@self. P;.
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Component Ensembles



Component Ensembles

®* Dynamic, goal-oriented groups of components
®* Content-based addressing

® Components
= Autonomic
= (Self-) adaptive

® Ensembles

= Emergent, distributed

= Mediate component cooperation
to achieve global system goals

17



Ensembles-based Component Systems

® Components

= Knowledge
* Local data + belief

= Processes (agent-level goals)
* Cyclic execution

monitor the - position
position evey 1s - route calendar

* Sensing/actuation

®* Ensembles
= Membership

* Declarative

= Coordination (group-level goals)

* Cyclic execution

Members are all parking lots
close to a vehicle and the vehicle.
Update the vehicle’s belief about
the parking-lots’ availability

®* Dynamic formation
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Ensemble VehiclesCloseByWithTrafficUpdatc Component Vehicle = {

vl: IVehicle
v2: IVehicle

membership :

proximity(vl.position, v2.position) <= DIS’

coordination {
vl.trafficinfo <-

v2.trafficInfo

}
}

I sse I

(component)
ParkingLot

(ens

position

freePlaces

VehiclesCloseB

(component)
Vehicle

schedule

route

AvailableP

J (com

Parl
posit
freeP

(component)
ParkingLot Pa

position

freePlaces

position: /Position

~availableParkinglLots: IParkingLot[]

route: IRoute
schedule: ISchedule

Ensemble
proc
fun
inp e Membership
e Condition
out
sch{
Holds
b} \/
Com Knowledge
free Exchange
POSi

process updateFreePlaces {
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Component Ensembles

Can be seen as a system of conditionally interacting
MAPE-K loops

MAPE-K Loop

Analyze = Plan - Central concept of
Monitor Knowledge Execute aUtonomlc comPUtlng

W 2 - Introduced by IBM

Sensor Effector
I Analyze ﬁ Plan
- Monitor Knowledge Execute
Analyze Plan
A\ V¥
Sensor Effector
Monitor Knowledge Execute
V¥

[& Y
Sensor Effector
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Communication

®* Need to distinguish between physical
communhnication and conceptual communication

®* Physical communication:

= |Infrastructure-less — gossip with communication
boundary

= Infrastructure-based — decentralized with keys

®* Conceptual communication

= Components see only that which is specified by an
ensemble

21



Communication Latency

* Knowledge evolves
= Asynchrony, delays due to distribution

A

knowledge
valuation

Real value 0\

Belief

< périod < period
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Ensembles (DEECo Component Model)



Programming with Ensembles

® DEECo Component model

°* Implements the concept of autonomic
components and ensembles

* Written in Java

® Available at GitHub
https://github.com/d3scomp/JDEECo
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Hello World Component

@Component
public class HelloWorld {

/**

* Id of the vehicle component.

*/
public String id;

/**
* Qutput of count process
*/

public int counter;

public HelloWorld(String id) {
this.id = id;
this.counter = 1;

}

/**
* Periodically prints "Hello world!"
*/

@Process

@PeriodicScheduling(period=1000)

public static void sayHello(@In("id") String id) {
System.out. format("Hello world!\n");

}

/**
* Periodically increments the counter.
*/

@Process

@PeriodicScheduling(period=500)

public static void updateCounter(
@InOut("counter") ParamHolder<Integer> counter

) A

counter.value ++;

} Processes

}
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Ensemble

@Ensemble
@PeriodicScheduling(period = 1000)
public class FollowerLeaderEnsemble {

public static final double ENSEMBLE RADIUS = 2000.0; // in meters

@Membership

public static boolean membership(
@In("member.id") String mId,
@In("coord.id") String cId,
@In("member.position”) Coord mPos,
@In("coord.position") Coord cPos) {

return getEuclidDistance(cPos, mPos) <= ENSEMBLE _RADIUS && cId.compareTo(mId) == -1;
}

@KnowledgeExchange

public static void exchange(
@In("coord.destinationLink") Id cDestinationLink,
@Out("member.leaderDestinationLink") ParamHolder<Id> mLeaderDestinationLink) {

mLeaderDestinationLink.value = cDestinationLink;
¥ Knowledge exchange
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JDEECo — Framework for Simulations

Java Virtual Machine

JDEECo Runtime

Local Replicas

|
1
Vehiclel .
Vehicle4

Knowledge Dissemination

JDEECo Runtime

Local Replicas

|
1
Vehicle4 .
Vehicle2

Knowledge Dissemination

(MATSim)

JDEECo Agent

Sensors

Event
Handler

Network Simulato rl (OMNet++)

Host

UDP Module
L
Network
Layer
. L

JDEECo
Connector

Host

UDP Module
u
Network
Layer
. L

JDEECo
Connector

Network Topology

JDEE Co Agent

Sensors

Environment Simulator
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Testbeds

°* MATSIM-based

= Simulates mobile components
in the urban traffic settings

= Ad-hoc communication
= http://self-adaptive.org/exemplars/v2v-DEECo

® ROS-based

= Simulates mobile robots on a 2D map
= Ad-hoc communication

® https://github.com/d3scomp/
deeco-adaptation-testbed

28



Expressivity of Ensembles



More Expressivity: Intelligent Ensembles

® Establishing ensembles can be perceived as a
constraint solving problem

* This allows rich declarative specification of
ensembles ...

... and translation of the specification to

constraint solving problem that can be consumed
by an existing solver

30



Using External DSL

ensemble ProtectionTeam
id fireLocation: EntitylD

membership
roles
brigades [2..3] : FireBrigade where

(it.state == State.ldle || it.state == State.Protecting) &&

it.location == location &&
FireP

-

odict
\WAV } AVa 9

O

rValueAt(fire
fitness sum brigades RouteCost(it.position, fireLocation)
knowledge exchange
brigades.assignedFireLocation = fireLocation

end
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Multi-paradigm Modelling

® Increase the level of abstraction in ensembles by
including domain-specific functions (models)

° E.g.:
= Reachability on a 2D map
= Reasoning about the potentiality

32



class FireBrigade(val entitylD: EntitylD) extends Component { o
val Protecting, Refilling, Idle = State US' ng
val Operational = StateOr(Protecting, Refilling, Idle)

Internal DSL
var brigadePosition: Position
var assignedFireLocation: EntitylD (i n Sca Ia )

sensing {
brigadePosition = agent.getPosition

}
constraints { Operational && (Protecting -> (assignedFireLocation !=0)) && ... }
utility { states.sum(s => if (s == Protecting) 1 else O }

actuation {
state match {
case Protecting =>

if (inExtinguishingDistanceFromFire) extinguish() else moveTo(assignedBuildingOnFire)

}...

sendMessages()

}

1 33



class ProtectionTeam(fireLocation: EntitylD) extends Ensemble {
val brigades = role("brigades",components.select[FireBrigade])

val routesToFireLocation = map.shortestPath.to(fireLocation)
val firePredictor = statespace(burnModel(fireLocation, currentFieriness), currentTime)

membership {
brigades.all(brigade => brigade.state == Idle
|| (brigade.state == Protecting && brigade.assignedFireLocation == fireLocation)) &&
brigades.all(brigade => routesToFireLocation.timeFrom(mapPosition(brigade)) match {
case None => false
case Some(travelTime) => firePredictor.valueAt(travelTime) < 0.9
}) && brigades.cardinality >= 2 && brigades.cardinality <=3

}

brigades.sum(b => travelTimeToUtility(routesToFireLocation.timeFrom(mapPosition(b))))

}

coordination {
for (brigade <- brigades.selectedMembers) {
brigade.assignedFireLocation = Some(fireLocation)

}
}
}
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class ProtectionTeam(fireLocation: EntitylD) extends Ensemble {

}

val brigades = role("brigades",components.select[FireBrigade])

val routesToFireLocation = map.shortestPath.to(fireLocation)
val firePredictor = statespace(burnModel(fireLocation, currentFieriness), currentTime)

membership {
brigades.all(brigade => brigade.state == Idle
| | (brigade.state == Protecting && brigade.assignedFireLocation == fireLocation)) &&
brigades.all(brigade => routesToFireLocation.timeFrom(mapPosition(brigade)) match {
case None => false
case Some(travelTime) => firePredictor.valueAt(travelTime) < 0.9
}) && brigades.cardinality >= 2 && brigades.cardinality <= 3

}
utility { igh- .

SCEESRIEEE eSS SISCRORIATROSENIrENSAtersstnaticanreach
}

coordination {
for (brigade <- brigades.selectedMembers) {
brigade.assignedFireLocation = Some(fireLocation)
}
}

the building before it burns almost completely”
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Goal-based design (via IRM)



Design Process

® Problem:

= Component ensembles have relatively exotic
computational model

* Very far from classical procedure call-based sequential
programming

®* Much closer to design of real-time systems — but also
adaptivity and open-endedness

= Method for high-level design are necessary
* To help developers “think” about such systems
®* Requirements = ... == Components + Ensembles
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Challenge

High-level
System Requirements

Low-level Design

All vehicles meet their
route/parking calendars

DEECo Processes/Ensembles

- Compute a route plan

once every 60s.

4 )
- Every 5s check the plan feasibility i:)

- Re-compute the plan if infeasible or

J

.

Formally grounded,

rigorous refinement

- Every 15s monitor
the availability

Every 10s update the vehicle’s belief
about availability of nearby parking lots

>

X
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Classical Approaches

Use-cases, User stories, ...

Use-case Example

Schedule meeting

User enters the possible dates of the meeting

Use enters e-mails of the participants

System validates the e-mail addresses

System sends an e-mail with an invitation to each participant
System confirms e-mails being sent

vk wh e

Describes “how” instead of “what”.
Inherently less adaptable/evolvable.
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Goal-oriented model-building at RE time

Goal-orientation enables:

* early, incremental analysis

* completeness and pertinence of the model
* reasoning about alternative options

* validation by stakeholders

* backward traceability

Thinking about goals in the early phases of
software development is a natural thing; in GORE it
is just made explicit

40



Approaches in GORE

e KAOS
“a GORE approach with a rich set of formal analysis techniques”

— Axel van Lamsweerde et al.
° i*

“an agent-oriented modeling framework that can be used for

requirements engineering”
- Eric Yu
' L5

UNIVERSITY OF

TORONTO

* TROPOS

“an agent-oriented software engineering methodology”
— John Mylopoulos et al.

41



KAOS multi-view modeling

Goal model

a /SafeTransportation/ I / W~

/ SpeedLimited / NoCollision e

DoorsClos \

Obstruction

/[ / J k

\_ /

Risk model
oStopAtSignal \ \
AN
AN N\

Concern

(Train |90 [ Block |

0.1
At

Position

~

Operationalization
Responsibility f
Compute

/% — Acceleration
Tracking ©
System

Send
Acceleration

K TrainController

=/

Operation model

Object model Agent model
Coverage
/ Controller i /E;ors opening

== sm%@rﬂ' A Passegaer [AtPlatform]
R

Closin .‘M [TimeOut]

Start_y Movement ~__ stat
— [doorsClosed]
— —= .'.' =
_ o>Eomsd i) ),

~0)

\I:I

Behavior model
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Goal model - |

behavioral (hard) goals: ! AN

soft goals:

e preferred behaviors

* no clear-cut criterion of
satisfaction

- Alternative options

e intended behaviors

e clear-cut criterion of
satisfaction

— Operational models

Vehicles navigate optimally

Achieve[Vehicles Ener SO n\
meet their deadlines] €rgy consumptio >/
. iS minimized
~————S—
Trip cost is minimizec\ AN
AN
f\\ Trip duration is
Achieve[Trip Avoid[Vehicles™ ‘ minimized N
Plan is followed] out of battery] 7/ \\
\
Vs \
/ AN A \
Achieve[Plan input [ Trip is secure
is available] - E g
A "\ I
=< =
non-functional goals: 4

functional goals:
Underlying operation,
feature, service, task

quality goals e.g. security,
accuracy, architectural,
development goals, etc.
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Goal model - Il

Avoid[Vehicles
out of battery]

alternative refinement
(OR-decomposition)

Achieve[Alarm

Maintain[Vehicle
handled when issued]

batteries charged]

Achieve[Alarm issued I‘}
when battery low] \
ASEN -
Achieve[Batteries Achieve[Batteries A
charged in stations] charged en route] = T
\ T @)
. \ z |2
requirement __—— main p assumption v
Achieve[Lot in station / Charai : :
) ; ging Charging stations
/ booked if available] stations available operational

Vehicle agents

Station Operator
44



Formal Specification of Goals

Type Achieve

Category Satisfaction
Source interview with VW
Priority Medium
FormalSpec

O0<T Booked(v,cl)

Name Lot in Station booked if available
Def If a place is available, then it must be
booked by the vehicle in order to recharge

V v: Vehicle, cl: Chargingl.ot:
LowBattery(v) A Available(cl) =

Achieve[Lot In station
booked if available]

/

Real-time linear temporal
logic:

oP,0P,PUN,P W N, and operators on past

45



Object model

Position

x_coord: Real

y_coord: Real
Station

Infrastructure

Achieve[Lot In station /
booked if available]
concerns

p

Charging Station go——— Charging Lot

available: boolean

] o o Vehicle
Objects: Entities, Associations, Events

Structure/Object model: UML class diagram notation

Only objects concerned in/referenced by goals are described



Operations model

Operation BookCharginglLot | A;S('}i"ei"i‘f;';i?;?}tlg" /
Def If a placeis available, then it must be C_hargmg Lot | coneems

booked by the vehicle in order to recharge avallable: boolean
Input cl: Charginglot, v: Vehicle : f /
Output cl

DomPrecl.available=true :
DomPostcl.available =false !

Reqpre ( Book Charging Lot }@performame___
ReqTrigfor LotInStationBookedIfAvailable: | : an
LowBattery(v) AClose(v,cl) §
ReqPost...

output input

DomPre, DomPost: what the operation meansin the domain

ReqgPre, ReqTrig, ReqPost: additional strengtheningto ensure the associated goal
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What Goals provide in KAOS

sufficient completeness criterion:

A specification is complete with respect to a set of goals if all the
goals can be proven to be achieved from the specification and the
properties known about the domain.

pertinence criterion:

A requirement is pertinent with respect to a set of goals if its
specification is used in the proof of at least one goal.
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Goals refinement checking

A refinement of goal G into subgoals SG,, ..., SG, is correct, when it is
* complete: {SG,, ..., SGy DOM} |=G

* consistent: {SG,, ..., SGy, DOM} |# false

* minimal: {SG,, ..., 5G, 4, SGj,y, s SGy, DOM} |# G

How to check goal refinements?

1. Use LTL theorem prover
 heavyweight, nonconstructive

2. Use bounded SAT solver
e input: SG; A...A SGn A Dom A—-G
 incremental check/debug

3. Reuse refinement patterns

49



Refinement patterns - |

e (Catalogue of patterns encoding refinement tactics
e Generic refinements proved formally, once for all
e Reuse through instantiation, in matching situation

Examples:

AN Refinement by case

CA Case1 C A Case2 Casel v Case? MvTooT
=0T1 =0T2 7 (Case1 A Case2)
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Refinement patterns - |l

/  c=soeT /

| guard introduction refinement

e —_—

/ CADS o Txf/ / C=0D / /_%%E:c wWT /

Achieve[TrainProgress]
On (tr, b) = ¢ On (tr, next(b))

— — — — —
e e

RN
R {F’mgress th"GD‘r Achieve [S:gnafSetToGa} \
On (tr, b) A Go (next(b)) = On (tr, b) = 0 Go (next(b)) :
& On (tr, next(b)) /

—

— —

Maintain [TrainWaiting]
On (tr, b) =
On (tr, b) W On (tr, next(b))
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Refinement patterns - lli

milestone refinement

/ C=0T / <:> Achieve[TargetCondition
H FromCurrentConsition]
.l'h\. .
' ' e
/‘\ ~— — — %1““““---______1

Achn::ve[M|IeStoneCond|t|on Achieve[MileStoneCondition
/ C=0M / / M=0T / From CurrentCondition] From CurrentCondition]

Formal pattern vs  informal guideline

Apart from goal refinement, patterns can be applied:
e Goal operationalization
e Obstacle analysis
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Requirements modeling — KAOS

—
Goal-oriented method for eliciting and analyzmg e

[\!ehides meet

the requirements of a software system. their deadines
» Goals have a prominent role e
> Formal methods are used when = /- mvokivehices
and where needed ~ .
Goal model & -
Agent model T Maintain[Vehicles //  Achieve[Alarm handled
Object model KAQOS ) refueied:\staﬁonsi / when i's‘%?ed]
Operation model specification e tenon
Behavior model . — ——
/ Achieve[Lot;’;station / Refu;%;g stations A
Applicability in design of EBCS: LD cperetonal
+ captures the (intended) system . Refsling stations 7 1‘ _E'Gm Gaal
behavior at a high level ‘ & LT reirement
+ allows for automatic formal reasoning i X : fomoon
_does not align requirements with atice Station Operator -  Property

architecture

is intended for requirements analysis
and documentation, not system design
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Requirements modeling — Tropos

Methodology for building agent-oriented
software systems that uses the i* notation.

» Agent and related notions (goals,
plans, intentions) have prominent role

» Focus on early stages of SWD and on
the organizational context <E

Meet deadlines
-
ollow optima
/ route
Not run out
of fuel

K.
o%

Acquire Route

@
Optimal < Obtain >
Goal models n:D Enhanced goal models Route Availability

4

Stop at meeting
points

Reserve places
in stations

Obtain reservatio
confirmations

Send Reservation
Requests

ug

Reservation
Confirmations

BDI architecture

Actor-Agent mappin aserve parking
(JACK, JADE) 1 g PP gQ ation

LEGEND Reservation
Actor Requests ' /Obtain Reservation :
Actor Requests Send Reservation

Applicability in design of EBCS:

oac O

boundary Confirmations
. . . Resource Satisfy
4 aligns the requirements phase with Task Availability(station) Requests
architecture and implementation phases [; (O 6oal
| O  Ssoftgoal Assign places /
preserves a manageable set of concepts > Means.end link - s}
*t throughout the software development +— Decompoition $ *
information
phases Some + Contributions ‘

Mak;’ to Softgoals
Vi K9

typically assumes static architecture
(speaks about fixed instances)

— a bit ambiguous (goal or task?)
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Detour: Resilient Systems

“A resilient control system is one that maintains
state awareness and an accepted level of
operational normalcy in response to disturbances,
including threats of an unexpected and malicious

nature”
[wikipedia]
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Resilience

System adaptability

System evolvability

Impact on external environment

* Cooperative aspects

56



SOTA Model

GPost

51

S2
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IRM - Invariant Refinement Method

Goals and Detailed

high-level system
specification design

Systematic gradual refinement

® Architecture design
®* Conceptual framework & guidelines
®* Borrows from goal-based requirements elaboration
= KAOS, i* T
< &

>

© &

LS
P
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Invariant (What is to be refined?)

-
-
-
- -

All vehicles meet their
route/parking calendars

* Describes the operational normalcy of a (sub)system
= j.e., the desired (global) state of the system that should be

Nnrnc nAd ac +thoa Ibn arloa r~|no Aaliiatin Al n t+i
|J|CDC| VCU OD Lllc |\||UVVI SC VC|IUC|LIUII CVUIVCD III LIIIIC

® Suitable for expressing both goals and low-level
concepts

* Syntactically a condition on knowledge valuation of a
set of components
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Refinement

All vehicles meet their
route/parking calendars

An up-to-date plan can
always be followed and it
always schedules reaching
the destination in time

Up-to-date V’s plan w.r.t.
P’s availability reflecting
V’s calendar is available

V’s position is aligned
with its plan

60



Leaves of Refinement (When to Stop?)

® Stop when an invariant is

= Assumption

= Can be “easily” mapped to a low-level execution concept
®* Process invariant

= Condition on knowledge of a single component
®* Exchange invariant

= A belief of a component vs. knowledge of another

Exchange

- Refinement step Invariants | eeersempe Ensembles’
o S Level i
o specification
. q:J Syst C t
o S ystem __» | Component | ___ |, _

: 'Implementation
=9 Level Level ‘ s

.

Components’ specification 1



Leaves of Refinement

All vehicles meet their
route/parking calendars

An up-to-date plan can °

always be followed and it
always schedules reaching
the destination in time

Up-to-date V’s plan w.r.t.
P’s availability reflecting
V’s calendar is available

V’s position is aligned
with its plan
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Leaves of Refinement

Up-to-date V’s plan w.r.t.
P’s availability reflecting
V’s calendar is available

Up-to-date V’s plan w.r.t. V’s
belief over P’s availability
reflecting V’s calendar is
available

V’s belief over P’s
availability corresponds to
up-to-date P’s availability
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IRM refinement tree

V] ememm—=m—zzEe= —@ All Vehicles meet their calenda
=Pl
/. ___;_’ ________ Voo _(? Up-'g}-da}te V::;Ian%lw.tr_.t. p (B T i /) an up-to-date plan can alwsys
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\ parking lots - is up-to-date \ reflecting V::calendar is available [ < - | i J
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From Leaves to Detailed Design/Code

® Straightforward conversion

= Cyclic execution of processes/knowledge exchange maintains
operational normalcy (described by invariants)

®* Process

= all the inputs/outputs

" post-condition/guarantee of the process
* Ensemble

" the components/knowledge involved

= the membership condition
" post-condition/guarantee of the knowledge exchange
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Design of components / ensembles

* Design of components and their roles (i.e. knowledge interfaces)

«Component» «Role»
Vehicle RouteSAMRole
+ alternativePLCS :List<PLCS> + alternativeRoutes :List<Route>
+ alternativeRoutes :List<Route> + currentPosition :Position
+ closeToPOIl :Boolean '___..7| + optimalRoute :Route
+ currentPosition :Position P_,.--"
+ energylLevel :EnergylLevel
+ eventsCalender :List<CalenderEvent> «Rolex»
+ onSchedule :Boolean PLCSSAMRole
+ optimalPLCS :PLCS e _ = - —
+ optimalRoute :Route + altelrnatlvePLCTS ‘List<PLCS>
+ spaceReservations :Map<PLCS, List<Reservation>> + optimalPLCS :PLCS
v milebeie e st + getNextPOIPosition() :Position
+ checkDistanceFromNextPOI() |
+ checkOnSchedule() TNl
+ computeAlternativePLCS() RN - A PLCSRole
+ 5 \h.
comwteAlterngtl\f_eRoutﬁQ + spaceReservations :Map<PLCS, List<Reservation>>
+ processReservations()
+ simulateMovement() + hasReservationForPLCS(PLCS) :Boolean
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Design of components / ensembles

* Design of component interaction patterns (i.e. ensembles)

= Captured as partial explicit architecture

= Valid in a particular situation

Heading to the destination

«Role»

VehicleRouteSAM::RouteSAMRole

+ alternativeRoutes :List<Route=
+ currentPosition :Position
+ optimalRoute :Route

N

—————
- .

'VehicleRouteSAM *,

“"-—_v-’

«Role»

VehicleRouteSAM::VehicleRole

+

region :Area

+ vehicleAlternatives :Map<Vehicle, List<Route>>
+ vehicleOptimalRoute :Map<Vehicle, Route>

«Component» gl
Vehicle

«Component» gl
RouteSAM
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Invariants on Different Levels of Abstraction

Unrestricted (future knowledge
values)

L

/ \ Restricted (past & present
knowledge values)
/\ —
I

Specific, concerns related to execution
(asynchrony, network latency).

< [P

Abstraction Level

-
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Invariant Patterns

A General

= Unrestricted (even future knowledge valuation)

Present-past

= SW system constraints (present/past knowledge valuation)

E . Activity Pattern
9 = Cyclic computational activity constraints Refinement
.§ = Current outputs vs. current/past inputs A
© = Qutput changes only as a result of computation
3 B —
< Process
= Periodic execution constraints — B
= Qutput is produced once every period »—
( Ensemble o (

= Periodic distributed execution constraints

= Qutput produced once every period from input outdated according

to the network latency s



Interesting Challenges (instead of conclusion)
s ® 2 © o @ o

* High-level of dynamicity and open-endedness
= Can we reason about dynamically changing open-ended systems?
®* Component self-awareness and adaptation based on current situation

= Can we somehow formally reason about the situation and the awareness of
it?

* Communication latency causes uncertainty (the system is almost
constantly in de-synchronized state)

= Can we somehow formally reason about system quality/reliability w.r.t. to
communication difficulty?

* Proper level of abstraction for feasible testing and verification of
correctness of components with emergent behavior

= Can we somehow cope with emergent behavior?
®* Continuous integration and regular updates
= Can we somehow verify these systems incrementally?

®* Security aspects
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