Autonomic component ensembles for
dynamic evolving architectures of
context aware smart systems

http://d3s.mff.cuni.cz

Tomas Bures

bures@d3s.mff.cuni.cz

Department of

' Distributed and
CHARLES UNIVERSITY IN PRAGUE Dependable

faculty of mathematics and physics

Context-aware, Autonomous, Smart ?

N

iowr plart 1
.

[LAMEE L

|
E E i \ N https://www.techinasia.com/this-self-watering-plant-pot-just-hit-its-crowdfunding-goal

https://www.petagadget.com/gadget/satechi-revogi-
bluetooth-4-0-rgbw-smart-led-bulb/

smarl Window

Light Swilch

Rir

condilione:

Windi Ran Saneor

https://www.pcmag.com/news/350867/smart-fridge-showdown-Ig-smart-
instaview-vs-samsung-family Doar magnet ssneor
‘Wiraless |F dabacion TV sal

3.5 Mastar pane

Homa Sever

http://smarthomeenergy.co.uk/what-smart-home 2

Context-aware, Autonomous, Smart

ollaborating computa %\mmm ing N SN T e
physical entities ad
Desngned as a network of interacting elements with

e

ofl ag‘d outpu

P |

ertainty

Smart planes for
safe air travel

Energy-efficient
power grld
g

Assistive
medical

Smart applicances in de.vices he!p
i P energy-effnuent homes . Patlents enjoy
Iteligent N I re ¢ Lt EnE ErEE
sensors for g " e)
: I l".) '@j) y
cleaner water £ i o “' Ne= N
resources SR i AP Robots at work W
BN Smart navigational devices so
\ parents and chlldren stay connected anc p’ay :
he Nl ek R R Y 0

source: National Science Foundatlon (nsf.gov)

3

Context-aware, Autonomous, Smart ?

* “Traditional” systems
= Well known in embedded systems community
® Focus on HW
= Limited architecture, limited dynamicity
= Sometimes not even perceived as distributed

®* “Smart” systems

= Exploit what we pretty already can do by letting things
cooperate

= _..and proactively act in their environment

Example: Robot Swarms

[FP7 project ASCENS — Deliverable D7.1]

Example: E-mobility

Time: 6:45PM

POI: Work .
Time: 7AM-4PM [POI: Home |
[|

N\

rPOI: Shopping

| Time: 4PM-6PM ﬁ'
N\

rPOI: Shopping

LTime: 4PM-6PM ﬁ-

[POI: Cinema]
Time: 2PM-4PM ﬁf

. POIl: Home
Time: 6:30PM

[FP7 project ASCENS — Deliverable D7.1 (VW Demonstrator)] [

6

Example: Mobile Edge Clouds

PTT Server

High Latency

WiFi Mobile Edge \ LTE Mobile Edge
lite | AN Lite |
\ PTT Server > PTT Server

//(t}"‘ i \ g /
- 4 : \-f } . E . L .
- o : ' E

Ultra Low / / \ | Ultra Low
Latency / / \ \ Latency
£/ b

/ g . \ -
4 3 J

http://www.uspurtek.com/?p=2413

Example: Ad-hoc Clouds

[FP7 project ASCENS — WP7.2 Demonstrator]

Software architecture challenge

How to model smart, autonomous and context-
aware systems to tame their complexity and give
some level of predictability

In particular:

® Architectural models

= Dynamicity

® Constantly evolving based on situations in the environment
= Autonomy

* Tradeoff between centralized and decentralized behavior

* Ability to make decisions at real-time
= Adaptivity

® Ability to function “well” in different (sometimes unforeseen) contexts

Challenges and existing approaches

“Classical” Component-Based Approach

®* Centralized ownership & deployment
®* Cannot capture dynamic changes in architecture
® Strong reliance on other components

Parking

User
lot

) Car

Parking

User
lot

Service-Oriented Approach

¢ 3-rd party ownership & deployment

®* Dynamic composition (but not visible in the

architecture)

* Strong reliance on other services

User

—C

Register
user

User

_c

Parking lot _Ot

registry

ParkinD

lot

éf’\ﬁ*
Car —C
o

Parking
lot _c

12

Agent-Based Approach

¢ 3-rd party ownership & deployment

®* Dynamic composition (but no architecture)

¢ Autonomous (beliefs — desires — intentions)

User

INFORM

User

Agents bring conceptual autonomy

But do not sufficiently translate it to

Beliefs
Desires
Intentions

T R
Car —C‘

*

-
.
*b_

lot

Parking
lot

13

Distributed Control Systems

e Software as a set of real-time tasks

= Sensing, actuating TA_m h . h |
= Real-time scheduling U)] | |]m

* Period, deadline, WCET T |
TC(.}...-.-...-mH"*

0-

B

—.__

100

® Distributed communication

= Reliable, real-time guarantees
= CAN, TTP, FlexRay, ...

Attribute-based Communication

®* Appears in coordination languages like SCEL, AbC

Calculus

= De Nicola R., Loreti M., Pugliese R., Tiezzi F.: A formal approach
to autonomic systems programming: The SCEL language, TAAS

vol. 9, issue 2, 2014

= Alrahman Y. A., De Nicola R., Loreti M.: On the Power of
Attribute-based Communication, FORTE 2016

qry(“targetLocation”, ?x, ?y)@(task = “task;”)
put(“targetLocation”, x, y)@self. P;.

15

Component Ensembles

Component Ensembles

®* Dynamic, goal-oriented groups of components
®* Content-based addressing

® Components
= Autonomic
= (Self-) adaptive

® Ensembles

= Emergent, distributed

= Mediate component cooperation
to achieve global system goals

17

Ensembles-based Component Systems

® Components

= Knowledge
* Local data + belief

= Processes (agent-level goals)
* Cyclic execution

monitor the - position
position evey 1s - route calendar

* Sensing/actuation

®* Ensembles
= Membership

* Declarative

= Coordination (group-level goals)

* Cyclic execution

Members are all parking lots
close to a vehicle and the vehicle.
Update the vehicle’s belief about
the parking-lots’ availability

®* Dynamic formation

18

Ensemble VehiclesCloseByWithTrafficUpdatc Component Vehicle = {

vl: IVehicle
v2: IVehicle

membership :

proximity(vl.position, v2.position) <= DIS’

coordination {
vl.trafficinfo <-

v2.trafficInfo

}
}

I sse I

(component)
ParkingLot

(ens

position

freePlaces

VehiclesCloseB

(component)
Vehicle

schedule

route

AvailableP

J (com

Parl
posit
freeP

(component)
ParkingLot Pa

position

freePlaces

position: /Position

~availableParkinglLots: IParkingLot[]

route: IRoute
schedule: ISchedule

Ensemble
proc
fun
inp e Membership
e Condition
out
sch{
Holds
b} \/
Com Knowledge
free Exchange
POSi

process updateFreePlaces {

19

Component Ensembles

Can be seen as a system of conditionally interacting
MAPE-K loops

MAPE-K Loop

Analyze = Plan - Central concept of
Monitor Knowledge Execute aUtonomlc comPUtlng

W 2 - Introduced by IBM

Sensor Effector
I Analyze ﬁ Plan
- Monitor Knowledge Execute
Analyze Plan
A\ V¥
Sensor Effector
Monitor Knowledge Execute
V¥

[& Y
Sensor Effector

20

Communication

®* Need to distinguish between physical
communhnication and conceptual communication

®* Physical communication:

= |Infrastructure-less — gossip with communication
boundary

= Infrastructure-based — decentralized with keys

®* Conceptual communication

= Components see only that which is specified by an
ensemble

21

Communication Latency

* Knowledge evolves
= Asynchrony, delays due to distribution

A

knowledge
valuation

Real value 0\

Belief

< périod < period

22

Ensembles (DEECo Component Model)

Programming with Ensembles

® DEECo Component model

°* Implements the concept of autonomic
components and ensembles

* Written in Java

® Available at GitHub
https://github.com/d3scomp/JDEECo

24

Hello World Component

@Component
public class HelloWorld {

/**

* Id of the vehicle component.

*/
public String id;

/**
* Qutput of count process
*/

public int counter;

public HelloWorld(String id) {
this.id = id;
this.counter = 1;

}

/**
* Periodically prints "Hello world!"
*/

@Process

@PeriodicScheduling(period=1000)

public static void sayHello(@In("id") String id) {
System.out. format("Hello world!\n");

}

/**
* Periodically increments the counter.
*/

@Process

@PeriodicScheduling(period=500)

public static void updateCounter(
@InOut("counter") ParamHolder<Integer> counter

) A

counter.value ++;

} Processes

}

25

Ensemble

@Ensemble
@PeriodicScheduling(period = 1000)
public class FollowerLeaderEnsemble {

public static final double ENSEMBLE RADIUS = 2000.0; // in meters

@Membership

public static boolean membership(
@In("member.id") String mId,
@In("coord.id") String cId,
@In("member.position”) Coord mPos,
@In("coord.position") Coord cPos) {

return getEuclidDistance(cPos, mPos) <= ENSEMBLE _RADIUS && cId.compareTo(mId) == -1;
}

@KnowledgeExchange

public static void exchange(
@In("coord.destinationLink") Id cDestinationLink,
@Out("member.leaderDestinationLink") ParamHolder<Id> mLeaderDestinationLink) {

mLeaderDestinationLink.value = cDestinationLink;
¥ Knowledge exchange

26

JDEECo — Framework for Simulations

Java Virtual Machine

JDEECo Runtime

Local Replicas

|
1
Vehiclel .
Vehicle4

Knowledge Dissemination

JDEECo Runtime

Local Replicas

|
1
Vehicle4 .
Vehicle2

Knowledge Dissemination

(MATSim)

JDEECo Agent

Sensors

Event
Handler

Network Simulato rl (OMNet++)

Host

UDP Module
L
Network
Layer
. L

JDEECo
Connector

Host

UDP Module
u
Network
Layer
. L

JDEECo
Connector

Network Topology

JDEE Co Agent

Sensors

Environment Simulator

27

Testbeds

°* MATSIM-based

= Simulates mobile components
in the urban traffic settings

= Ad-hoc communication
= http://self-adaptive.org/exemplars/v2v-DEECo

® ROS-based

= Simulates mobile robots on a 2D map
= Ad-hoc communication

® https://github.com/d3scomp/
deeco-adaptation-testbed

28

Expressivity of Ensembles

More Expressivity: Intelligent Ensembles

® Establishing ensembles can be perceived as a
constraint solving problem

* This allows rich declarative specification of
ensembles ...

... and translation of the specification to

constraint solving problem that can be consumed
by an existing solver

30

Using External DSL

ensemble ProtectionTeam
id fireLocation: EntitylD

membership
roles
brigades [2..3] : FireBrigade where

(it.state == State.ldle || it.state == State.Protecting) &&

it.location == location &&
FireP

-

odict
\WAV } AVa 9

O

rValueAt(fire
fitness sum brigades RouteCost(it.position, fireLocation)
knowledge exchange
brigades.assignedFireLocation = fireLocation

end

31

Multi-paradigm Modelling

® Increase the level of abstraction in ensembles by
including domain-specific functions (models)

° E.g.:
= Reachability on a 2D map
= Reasoning about the potentiality

32

class FireBrigade(val entitylD: EntitylD) extends Component { o
val Protecting, Refilling, Idle = State US' ng
val Operational = StateOr(Protecting, Refilling, Idle)

Internal DSL
var brigadePosition: Position
var assignedFireLocation: EntitylD (i n Sca Ia)

sensing {
brigadePosition = agent.getPosition

}
constraints { Operational && (Protecting -> (assignedFireLocation !=0)) && ... }
utility { states.sum(s => if (s == Protecting) 1 else O }

actuation {
state match {
case Protecting =>

if (inExtinguishingDistanceFromFire) extinguish() else moveTo(assignedBuildingOnFire)

}...

sendMessages()

}

1 33

class ProtectionTeam(fireLocation: EntitylD) extends Ensemble {
val brigades = role("brigades",components.select[FireBrigade])

val routesToFireLocation = map.shortestPath.to(fireLocation)
val firePredictor = statespace(burnModel(fireLocation, currentFieriness), currentTime)

membership {
brigades.all(brigade => brigade.state == Idle
|| (brigade.state == Protecting && brigade.assignedFireLocation == fireLocation)) &&
brigades.all(brigade => routesToFireLocation.timeFrom(mapPosition(brigade)) match {
case None => false
case Some(travelTime) => firePredictor.valueAt(travelTime) < 0.9
}) && brigades.cardinality >= 2 && brigades.cardinality <=3

}

brigades.sum(b => travelTimeToUtility(routesToFireLocation.timeFrom(mapPosition(b))))

}

coordination {
for (brigade <- brigades.selectedMembers) {
brigade.assignedFireLocation = Some(fireLocation)

}
}
}

34

class ProtectionTeam(fireLocation: EntitylD) extends Ensemble {

}

val brigades = role("brigades",components.select[FireBrigade])

val routesToFireLocation = map.shortestPath.to(fireLocation)
val firePredictor = statespace(burnModel(fireLocation, currentFieriness), currentTime)

membership {
brigades.all(brigade => brigade.state == Idle
| | (brigade.state == Protecting && brigade.assignedFireLocation == fireLocation)) &&
brigades.all(brigade => routesToFireLocation.timeFrom(mapPosition(brigade)) match {
case None => false
case Some(travelTime) => firePredictor.valueAt(travelTime) < 0.9
}) && brigades.cardinality >= 2 && brigades.cardinality <= 3

}
utility { igh- .

SCEESRIEEE eSS SISCRORIATROSENIrENSAtersstnaticanreach
}

coordination {
for (brigade <- brigades.selectedMembers) {
brigade.assignedFireLocation = Some(fireLocation)
}
}

the building before it burns almost completely”

35

Goal-based design (via IRM)

Design Process

® Problem:

= Component ensembles have relatively exotic
computational model

* Very far from classical procedure call-based sequential
programming

®* Much closer to design of real-time systems — but also
adaptivity and open-endedness

= Method for high-level design are necessary
* To help developers “think” about such systems
®* Requirements = ... == Components + Ensembles

37

Challenge

High-level
System Requirements

Low-level Design

All vehicles meet their
route/parking calendars

DEECo Processes/Ensembles

- Compute a route plan

once every 60s.

4)
- Every 5s check the plan feasibility i:)

- Re-compute the plan if infeasible or

J

.

Formally grounded,

rigorous refinement

- Every 15s monitor
the availability

Every 10s update the vehicle’s belief
about availability of nearby parking lots

>

X

38

Classical Approaches

Use-cases, User stories, ...

Use-case Example

Schedule meeting

User enters the possible dates of the meeting

Use enters e-mails of the participants

System validates the e-mail addresses

System sends an e-mail with an invitation to each participant
System confirms e-mails being sent

vk wh e

Describes “how” instead of “what”.
Inherently less adaptable/evolvable.

39

Goal-oriented model-building at RE time

Goal-orientation enables:

* early, incremental analysis

* completeness and pertinence of the model
* reasoning about alternative options

* validation by stakeholders

* backward traceability

Thinking about goals in the early phases of
software development is a natural thing; in GORE it
is just made explicit

40

Approaches in GORE

e KAOS
“a GORE approach with a rich set of formal analysis techniques”

— Axel van Lamsweerde et al.
° i*

“an agent-oriented modeling framework that can be used for

requirements engineering”
- Eric Yu
' L5

UNIVERSITY OF

TORONTO

* TROPOS

“an agent-oriented software engineering methodology”
— John Mylopoulos et al.

41

KAOS multi-view modeling

Goal model

a /SafeTransportation/ I / W~

/ SpeedLimited / NoCollision e

DoorsClos \

Obstruction

/[/ J k

_ /

Risk model
oStopAtSignal \ \
AN
AN N\

Concern

(Train |90 [Block |

0.1
At

Position

~

Operationalization
Responsibility f
Compute

/% — Acceleration
Tracking ©
System

Send
Acceleration

K TrainController

=/

Operation model

Object model Agent model
Coverage
/ Controller i /E;ors opening

== sm%@rﬂ' A Passegaer [AtPlatform]
R

Closin .‘M [TimeOut]

Start_y Movement ~__ stat
— [doorsClosed]
— —= .'.' =
_ o>Eomsd i)),

~0)

\I:I

Behavior model

42

Goal model - |

behavioral (hard) goals: ! AN

soft goals:

e preferred behaviors

* no clear-cut criterion of
satisfaction

- Alternative options

e intended behaviors

e clear-cut criterion of
satisfaction

— Operational models

Vehicles navigate optimally

Achieve[Vehicles Ener SO n\
meet their deadlines] €rgy consumptio >/
. iS minimized
~————S—
Trip cost is minimizec\ AN
AN
f\\ Trip duration is
Achieve[Trip Avoid[Vehicles™ ‘ minimized N
Plan is followed] out of battery] 7/ \\
\
Vs \
/ AN A \
Achieve[Plan input [Trip is secure
is available] - E g
A "\ I
=< =
non-functional goals: 4

functional goals:
Underlying operation,
feature, service, task

quality goals e.g. security,
accuracy, architectural,
development goals, etc.

43

Goal model - Il

Avoid[Vehicles
out of battery]

alternative refinement
(OR-decomposition)

Achieve[Alarm

Maintain[Vehicle
handled when issued]

batteries charged]

Achieve[Alarm issued I‘}
when battery low] \
ASEN -
Achieve[Batteries Achieve[Batteries A
charged in stations] charged en route] = T
\ T @)
. \ z |2
requirement __—— main p assumption v
Achieve[Lot in station / Charai : :
) ; ging Charging stations
/ booked if available] stations available operational

Vehicle agents

Station Operator
44

Formal Specification of Goals

Type Achieve

Category Satisfaction
Source interview with VW
Priority Medium
FormalSpec

O0<T Booked(v,cl)

Name Lot in Station booked if available
Def If a place is available, then it must be
booked by the vehicle in order to recharge

V v: Vehicle, cl: Chargingl.ot:
LowBattery(v) A Available(cl) =

Achieve[Lot In station
booked if available]

/

Real-time linear temporal
logic:

oP,0P,PUN,P W N, and operators on past

45

Object model

Position

x_coord: Real

y_coord: Real
Station

Infrastructure

Achieve[Lot In station /
booked if available]
concerns

p

Charging Station go——— Charging Lot

available: boolean

] o o Vehicle
Objects: Entities, Associations, Events

Structure/Object model: UML class diagram notation

Only objects concerned in/referenced by goals are described

Operations model

Operation BookCharginglLot | A;S('}i"ei"i‘f;';i?;?}tlg" /
Def If a placeis available, then it must be C_hargmg Lot | coneems

booked by the vehicle in order to recharge avallable: boolean
Input cl: Charginglot, v: Vehicle : f /
Output cl

DomPrecl.available=true :
DomPostcl.available =false !

Reqpre (Book Charging Lot }@performame___
ReqTrigfor LotInStationBookedIfAvailable: | : an
LowBattery(v) AClose(v,cl) §
ReqPost...

output input

DomPre, DomPost: what the operation meansin the domain

ReqgPre, ReqTrig, ReqPost: additional strengtheningto ensure the associated goal

47

What Goals provide in KAOS

sufficient completeness criterion:

A specification is complete with respect to a set of goals if all the
goals can be proven to be achieved from the specification and the
properties known about the domain.

pertinence criterion:

A requirement is pertinent with respect to a set of goals if its
specification is used in the proof of at least one goal.

48

Goals refinement checking

A refinement of goal G into subgoals SG,, ..., SG, is correct, when it is
* complete: {SG,, ..., SGy DOM} |=G

* consistent: {SG,, ..., SGy, DOM} |# false

* minimal: {SG,, ..., 5G, 4, SGj,y, s SGy, DOM} |# G

How to check goal refinements?

1. Use LTL theorem prover
 heavyweight, nonconstructive

2. Use bounded SAT solver
e input: SG; A...A SGn A Dom A—-G
 incremental check/debug

3. Reuse refinement patterns

49

Refinement patterns - |

e (Catalogue of patterns encoding refinement tactics
e Generic refinements proved formally, once for all
e Reuse through instantiation, in matching situation

Examples:

AN Refinement by case

CA Case1 C A Case2 Casel v Case? MvTooT
=0T1 =0T2 7 (Case1 A Case2)

50

Refinement patterns - |l

/ c=soeT /

| guard introduction refinement

e —_—

/ CADS o Txf/ / C=0D / /_%%E:c wWT /

Achieve[TrainProgress]
On (tr, b) = ¢ On (tr, next(b))

— — — — —
e e

RN
R {F’mgress th"GD‘r Achieve [S:gnafSetToGa} \
On (tr, b) A Go (next(b)) = On (tr, b) = 0 Go (next(b)) :
& On (tr, next(b)) /

—

— —

Maintain [TrainWaiting]
On (tr, b) =
On (tr, b) W On (tr, next(b))

51

Refinement patterns - lli

milestone refinement

/ C=0T / <:> Achieve[TargetCondition
H FromCurrentConsition]
.l'h\. .
' ' e
/‘\ ~— — — %1““““---______1

Achn::ve[M|IeStoneCond|t|on Achieve[MileStoneCondition
/ C=0M / / M=0T / From CurrentCondition] From CurrentCondition]

Formal pattern vs informal guideline

Apart from goal refinement, patterns can be applied:
e Goal operationalization
e Obstacle analysis

52

Requirements modeling — KAOS

—
Goal-oriented method for eliciting and analyzmg e

[\!ehides meet

the requirements of a software system. their deadines
» Goals have a prominent role e
> Formal methods are used when = /- mvokivehices
and where needed ~ .
Goal model & -
Agent model T Maintain[Vehicles // Achieve[Alarm handled
Object model KAQOS) refueied:\staﬁonsi / when i's‘%?ed]
Operation model specification e tenon
Behavior model . — ——
/ Achieve[Lot;’;station / Refu;%;g stations A
Applicability in design of EBCS: LD cperetonal
+ captures the (intended) system . Refsling stations 7 1‘ _E'Gm Gaal
behavior at a high level ‘ & LT reirement
+ allows for automatic formal reasoning i X : fomoon
_does not align requirements with atice Station Operator - Property

architecture

is intended for requirements analysis
and documentation, not system design

53

Requirements modeling — Tropos

Methodology for building agent-oriented
software systems that uses the i* notation.

» Agent and related notions (goals,
plans, intentions) have prominent role

» Focus on early stages of SWD and on
the organizational context <E

Meet deadlines
-
ollow optima
/ route
Not run out
of fuel

K.
o%

Acquire Route

@
Optimal < Obtain >
Goal models n:D Enhanced goal models Route Availability

4

Stop at meeting
points

Reserve places
in stations

Obtain reservatio
confirmations

Send Reservation
Requests

ug

Reservation
Confirmations

BDI architecture

Actor-Agent mappin aserve parking
(JACK, JADE) 1 g PP gQ ation

LEGEND Reservation
Actor Requests ' /Obtain Reservation :
Actor Requests Send Reservation

Applicability in design of EBCS:

oac O

boundary Confirmations
. . . Resource Satisfy
4 aligns the requirements phase with Task Availability(station) Requests
architecture and implementation phases [; (O 6oal
| O Ssoftgoal Assign places /
preserves a manageable set of concepts > Means.end link - s}
*t throughout the software development +— Decompoition $ *
information
phases Some + Contributions ‘

Mak;’ to Softgoals
Vi K9

typically assumes static architecture
(speaks about fixed instances)

— a bit ambiguous (goal or task?)

54

Detour: Resilient Systems

“A resilient control system is one that maintains
state awareness and an accepted level of
operational normalcy in response to disturbances,
including threats of an unexpected and malicious

nature”
[wikipedia]

55

Resilience

System adaptability

System evolvability

Impact on external environment

* Cooperative aspects

56

SOTA Model

GPost

51

S2

57

IRM - Invariant Refinement Method

Goals and Detailed

high-level system
specification design

Systematic gradual refinement

® Architecture design
®* Conceptual framework & guidelines
®* Borrows from goal-based requirements elaboration
= KAOS, i* T
< &

>

© &

LS
P

58

Invariant (What is to be refined?)

-
-
-
- -

All vehicles meet their
route/parking calendars

* Describes the operational normalcy of a (sub)system
= j.e., the desired (global) state of the system that should be

Nnrnc nAd ac +thoa Ibn arloa r~|no Aaliiatin Al n t+i
|J|CDC| VCU OD Lllc |\||UVVI SC VC|IUC|LIUII CVUIVCD III LIIIIC

® Suitable for expressing both goals and low-level
concepts

* Syntactically a condition on knowledge valuation of a
set of components

59

Refinement

All vehicles meet their
route/parking calendars

An up-to-date plan can
always be followed and it
always schedules reaching
the destination in time

Up-to-date V’s plan w.r.t.
P’s availability reflecting
V’s calendar is available

V’s position is aligned
with its plan

60

Leaves of Refinement (When to Stop?)

® Stop when an invariant is

= Assumption

= Can be “easily” mapped to a low-level execution concept
®* Process invariant

= Condition on knowledge of a single component
®* Exchange invariant

= A belief of a component vs. knowledge of another

Exchange

- Refinement step Invariants | eeersempe Ensembles’
o S Level i
o specification
. q:J Syst C t
o S ystem __» | Component | ___ |, _

: 'Implementation
=9 Level Level ‘ s

.

Components’ specification 1

Leaves of Refinement

All vehicles meet their
route/parking calendars

An up-to-date plan can °

always be followed and it
always schedules reaching
the destination in time

Up-to-date V’s plan w.r.t.
P’s availability reflecting
V’s calendar is available

V’s position is aligned
with its plan

62

Leaves of Refinement

Up-to-date V’s plan w.r.t.
P’s availability reflecting
V’s calendar is available

Up-to-date V’s plan w.r.t. V’s
belief over P’s availability
reflecting V’s calendar is
available

V’s belief over P’s
availability corresponds to
up-to-date P’s availability

63

IRM refinement tree

V] ememm—=m—zzEe= —@ All Vehicles meet their calenda
=Pl
/. ___;_’ ________ Voo _(? Up-'g}-da}te V::;Ian%lw.tr_.t. p (B T i /) an up-to-date plan can alwsys
’,"" Fd Ll orTa llond ro_m ! rT t?lc ing alignment with the V::plan oe followed by the vehicle and it always
s ,:' 2 ML e AU - schedules reaching the destination in
I b - R time
‘ : P :
Parkinglot [AT~ T ‘-..,\
\ -[P]“- \‘-h‘s_ \‘\
\‘ = \s\
\ Slilotoidate M pk s V::planFeasibility (6) V::planFeasibility w.r.t. N
\ _[V]---A P::availability and V::planFeasibility, J----wooeemmmmmm o -
\ - . . . V::energy and V::traffic is determined N
),_—’ reflecting V::calendar is available /N~ ™~ Ame—e SN
R ‘\ = [V]‘——.__ \\:\
o \ \\\\
e \ ‘\\ \\ \
,/ ‘\‘ ‘\ \\ \\
II + Y AN Y
; *[P] n \\
\
"l g— \‘ /_ o P \‘ \ \\‘
. . T . ihili i)
| (7) V::availabilityList - V's belief T T e e ®\ (9) V::energy a.nd V::traffic are (10) V::planFeasibility w..r.jc, the mor.'utored ! '
n“ - P::i?vailabill'ty of trip-relevant V::availabilityList and V::planFeasibility, monitored \ V::energy and V::traffic is determined iy ".
\ parking lots - is up-to-date \ reflecting V::calendar is available [< - | i J
7 = = H % ! J S
s I B / L ! e
\\ J.’Lv] J[V] . ,’ /’
\\‘ s . ’/' . . o’
__.--| Exchange Invariants Process Invariants
venide [--2-{ Multiple-component concern. | Single-component concern.
=== Map to ensemble. L ——--1 Map to component process.

64

From Leaves to Detailed Design/Code

® Straightforward conversion

= Cyclic execution of processes/knowledge exchange maintains
operational normalcy (described by invariants)

®* Process

= all the inputs/outputs

" post-condition/guarantee of the process
* Ensemble

" the components/knowledge involved

= the membership condition
" post-condition/guarantee of the knowledge exchange

65

Design of components / ensembles

* Design of components and their roles (i.e. knowledge interfaces)

«Component» «Role»
Vehicle RouteSAMRole
+ alternativePLCS :List<PLCS> + alternativeRoutes :List<Route>
+ alternativeRoutes :List<Route> + currentPosition :Position
+ closeToPOIl :Boolean '___..7| + optimalRoute :Route
+ currentPosition :Position P_,.--"
+ energylLevel :EnergylLevel
+ eventsCalender :List<CalenderEvent> «Rolex»
+ onSchedule :Boolean PLCSSAMRole
+ optimalPLCS :PLCS e _ = - —
+ optimalRoute :Route + altelrnatlvePLCTS ‘List<PLCS>
+ spaceReservations :Map<PLCS, List<Reservation>> + optimalPLCS :PLCS
v milebeie e st + getNextPOIPosition() :Position
+ checkDistanceFromNextPOI() |
+ checkOnSchedule() TNl
+ computeAlternativePLCS() RN - A PLCSRole
+ 5 \h.
comwteAlterngtl\f_eRoutﬁQ + spaceReservations :Map<PLCS, List<Reservation>>
+ processReservations()
+ simulateMovement() + hasReservationForPLCS(PLCS) :Boolean

66

Design of components / ensembles

* Design of component interaction patterns (i.e. ensembles)

= Captured as partial explicit architecture

= Valid in a particular situation

Heading to the destination

«Role»

VehicleRouteSAM::RouteSAMRole

+ alternativeRoutes :List<Route=
+ currentPosition :Position
+ optimalRoute :Route

N

—————
- .

'VehicleRouteSAM *,

“"-—_v-’

«Role»

VehicleRouteSAM::VehicleRole

+

region :Area

+ vehicleAlternatives :Map<Vehicle, List<Route>>
+ vehicleOptimalRoute :Map<Vehicle, Route>

«Component» gl
Vehicle

«Component» gl
RouteSAM

67

Invariants on Different Levels of Abstraction

Unrestricted (future knowledge
values)

L

/ \ Restricted (past & present
knowledge values)
/\ —
I

Specific, concerns related to execution
(asynchrony, network latency).

< [P

Abstraction Level

-

68

Invariant Patterns

A General

= Unrestricted (even future knowledge valuation)

Present-past

= SW system constraints (present/past knowledge valuation)

E . Activity Pattern
9 = Cyclic computational activity constraints Refinement
.§ = Current outputs vs. current/past inputs A
© = Qutput changes only as a result of computation
3 B —
< Process
= Periodic execution constraints — B
= Qutput is produced once every period »—
(Ensemble o (

= Periodic distributed execution constraints

= Qutput produced once every period from input outdated according

to the network latency s

Interesting Challenges (instead of conclusion)
s ® 2 © o @ o

* High-level of dynamicity and open-endedness
= Can we reason about dynamically changing open-ended systems?
®* Component self-awareness and adaptation based on current situation

= Can we somehow formally reason about the situation and the awareness of
it?

* Communication latency causes uncertainty (the system is almost
constantly in de-synchronized state)

= Can we somehow formally reason about system quality/reliability w.r.t. to
communication difficulty?

* Proper level of abstraction for feasible testing and verification of
correctness of components with emergent behavior

= Can we somehow cope with emergent behavior?
®* Continuous integration and regular updates
= Can we somehow verify these systems incrementally?

®* Security aspects

70

